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Abstract 

A lattice-dynamical evaluation of the mean-square 
displacement tensor W for a non-rigid molecule is 
not a difficult problem in the harmonic approxima- 
tion, provided appropriate potentials are known; 
from it, essential information for bond-length correc- 
tion can be easily derived. The symmetry transforma- 
tions and the site-symmetry requirements for W are 
discussed on the basis of group theory: for the rigid 
body, they coincide with the requirements for T, L 
and S. 

Introduction 

Thermal motion analysis is becoming more and more 
important when particularly accurate results concern- 
ing crystal structure are wanted. For cases involving 
rigid molecules, the interpretation of atomic tem- 
perature factors (B's) in terms of two or three 
molecular tensors T, L and S is quite useful (Cruick- 
shank, 1956; Schomaker & Trueblood, 1968, here 
onwards ST; Pawley, 1972a). However, for small or 
highly symmetrical molecules, there are difficulties in 
deriving T, L and S, because of a singularity or 
ill-conditioning of the least-squares matrix (Johnson, 
1970, 1980; Filippini, Gramaccioli, Simonetta & 
Suffritti, 1974a). Sometimes the molecule can hardly 
be considered as 'rigid', even if the fit of the B's to 
T, L and S is good. 

For all these cases, a lattice-dynamical evaluation 
of thermal motion seems to be a promising solution 
(Pawley, 1967, 1968, 1972a, b; Cochran & Pawley, 
1964; Willis & Howard, 1975; Kroon & Vos, 1979; 
Filippini, Gramaccioli, Simonetta & Suffritti, 1973, 
1974a, b, 1976a, b, 1978; Bonadeo & Burgos, 1982; 
Gramaccioli, Filippini & Simonetta, 1982; Gramac- 
cioli & Filippini, 1983, 1984, 1985; Scheringer, 1982a, 
b, c). In our generalized treatment for a non-rigid 
molecule (Gramaccioli & Filippini, 1983, hereafter 
GF), the best description of molecular motion is 
obtained in terms of the normal coordinates of the 
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isolated molecule (Taddei, Bonadeo, Marzocchi & 
Califano, 1973; Bonadeo & Taddei, 1973; Neto, 
Righini, Califano & Walmsley, 1978; Bonadeo & 
Burgos, 1982). The set of normal coordinates should 
include the ones corresponding to zero frequency, if 
the routine that has been proposed by Wilson, Decius 
& Cross (1955) or Gwinn (1971) is used: in this way, 
rotations and translations can be given the same 
mathematical treatment as for the internal motion. 

In GF, we proposed the use of a mean-square 
displacement tensor (W) relative to all the molecule. 
This tensor includes external and internal modes 
together, and can be obtained as 

W = ( w r ) =  N -~ ~] E~,(k)oJ,(k)-2p(~k)]p*(~k)] T, 
¢,k 

(1) 

where E~(k) is the average energy of the ~b mode for 
a certain value of the wave vector k, p(~bk) are the 
eigenvectors of the dynamical matrix D(k), and v 
indicates the displacement in terms of normal (mass- 
weighted) coordinates of the free molecule. From W, 
all the 'usual' crystallographic tensors, such as the 
B's orT, L, S can be easily obtained (see GF, equation 
6.4 in Willis & Pryor, 1975, or below); also, the 
so-called 'coupling tensors' U(ij)=(u(i)lu(j)l  r) 
between the atoms i and j can be derived from W by 
a simple transformation [see (3) below]. Such tensors 
are essential, for bond-length correction in the most 
general case (Johnson, 1970, 1980; Scheringer, 1972b) 
and cannot be obtained from the usual diffraction 
data. Obviously, the advantages of using W in lieu of 
T, L and S are especially evident for the non-rigid 
body, when the latter tensors are not sufficient for 
describing the molecular motion. 

If the molecule is in a special position, W is subject 
to site-symmetry requirements, which may be interest- 
ing to ascertain. The problem is not only of academic 
interest, because a considerable restriction of the Bril- 
louin-zone sampling in our calculations can be 
achieved. For a rigid body we have, for instance 
(Filippini, Gramaccioli, Simonetta & Suffritti, 
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1976a), 

T = X M j T I M f ,  L = X MjL1Mf; 
J J 

s = X IMjlMjS MT, (2) 
J 

where the M / s  are the transformation matrices of the 
site-symmetry group, and the summation is extended 
to all the operations in the group. T~, L1 and Sl are 
the contributions to T, L and S obtained from samp- 
ling the asymmetric part of the Brillouin zone, and 
[Mj[ is the determinant of Mj. The results are in 
complete agreement with ST. 

On extending our calculations to a non-rigid model, 
our first routine for calculating the B's from W (which 
was used in GF) involved applying symmetry trans- 
formations directly to temperature factors. However, 
this routine becomes considerably cumbersome when 
the coupling tensors U(/j) are also wanted, whereas 
the other way, implying symmetry transformations of 
W as for T, L and S [see (2) to (5)], is much simpler. 

Therefore, we decided to examine such symmetry 
transformations in detail, as well as the site-symmetry 
requirements. Some of these are quite simple, accord- 
ing to group theory, and can be applied to a general 
case involving any kind of site symmetry and internal 
coordinates. As a particular case, they should include 
(or be compatible with) the site-symmetry require- 
ments, or the transformations, of T, L, S and of any 
atomic temperature factor. 

Method of calculation 

Let us first recall the relationships between W and 
temperature factors, as given by GF: 

= Vm-1/2Wm-1/2V r. (3) 

Here V is a matrix whose columns are the eigenvec- 
tors of the mass-adjusted dynamical matrix of the 
isolated molecule, m is the so-called 'mass matrix', 
which contains each one of the atomic masses 
repeated three times, in sequence along the main 
diagonal, and having all other elements equal to zero. 

The 3 × 3 blocks along the main diagonal of 1~ are 
the atomic mean-square displacement tensors U(i);  
the off-diagonal blocks are the coupling tensors U(ij). 

If the molecule is in a non-trivial symmetric site, 
for obtaining W a procedure similar to (2) can be 
adopted: 

W =  ~'. W~j = X QjW~Qf, (4) 
J J 

where Wl is the contribution to W in the asymmetric 
part of the Brillouin zone with respect to the site- 
symmetry group, W~j is the transformed counterpart 
of Wl with respect to the j th  symmetry operation, 
and Qi is the corresponding transformation matrix 

of Wl (and W). Since W = (wr),  we have 

Wj I IT = (v)v)) = Qj(vjvf)Qf 

= Qj(vvr)Q~= Q j W Q  f . (5) 

Therefore, from (5) it is evident that v~ = Qjv, i.e. 
the transformation matrices for W are the same as 
for the displacement vectors v. Since the components 
of such vectors here refer to the normal coordinates 
of the free molecule, Qj will be a block-diagonal 
matrix. In Qj each block refers to one normal coordin- 
ate (or more if symmetry degenerate) and can be 
deduced from symmetry labelling of such normal 
modes with respect to the site symmetry group. In 
other words, the set of Q / s  is the direct sum of 
representations of the group that are carried by all 
the normal coordinates. 

According to (4), an element W= of W occurring 
for a particular site symmetry can be written as 

Wrs = ~. ~ Qrk(j)Qsl(j)Wlkl, (6) 
j kl=l,n 

where the summation on the index j is referred to all 
the site-symmetry group operations, and n is the order 
of W. Owing to the nature of Q, a non-zero element 
Q,k(j) o r  Q,t(j) will correspond to an element Mtu(jp) 
or Mow(j~,) of a matrix belonging to a certain rep- 
resentation Fp or F~, of the site-symmetry grouprela- 
tive to the normal coordinates r or s, respectively. It 
will be, in general: t = r - ml ; u = k - rnl; v = s - m2; 
w = l - m2, where ml and rn2 are the sum of the orders 
of the preceding blocks in the diagonal of the Qfs .  
Therefore, we have 

Wrs = Z X Qrk(j)Qsl(j)Wlkt t a j  

= ~ E Mtu(ja)Mvw(jo-)Wlkl. (7) 
/d j 

(uw) 

Because of the orthogonality relationship, 

E * = 6po, rtoS,,wh / g, M,u(jp)Mo~j~) (8) 
J 

where g is the dimension of the representation and 
h is the order of the group. Consequently, i f M  is real: 

Wr, = X Wlkl Z Mt,,(jt,)Mvw<j,,) 
kt j 

(uw) 

= h / g  Z WaktSo,,S,o8,,,,. (9) 
kl 

If q,, q, are symmetry-related degenerate coordin- 
ates, we have ma = m2 and (7) can be written as 

Wrs ~--- Z Z Mt,¢ja)Mo~<ja)W~kt 
kl j 

= h / g  ~. 6,srktWlkz 
kl 

= h / g  8,, X Wlkk. (10) 
k 
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Expressions (8) to (10), however, have been derived 
with the assumption that M's are matrices belonging 
to irreducible representations. This happens for the 
great majority of cases; the only exceptions occur for 
the E representations of the groups Ck, Ckh, Sk, T or 
Th, where some elements are complex when they are 
irreducible. 

For such cases, we could define P(jp) as a 2 x2 
matrix, where P12 = P2t = 0, and P~ = P2"2 = 
exp (2~-i~p), ~p being the rotation angle corresponding 
to the matrix M(jp). Therefore, the representations 
concerning the P matrices are the direct sum of two 
irreducible monodimensional representations, which 
are complex conjugate to each other. An element 
Mt,(jp) will be a linear combination of the elements 
of Pcjp), according to the transformation 

where 

Also, 

M(jp) = UP(~p)U +, ( 1 1 ) 

U=1/2~/2( 1 

Up~p)U + = -1 T M(jp) = M(jp). (12) 

Here P~p) corresponds to P(~p), where non-zero 
elements are exchanged. By developing (7), and 
knowing (8), (1 1) and (12), even in such cases we have 

Wrs = 0 for Fp ~ F~. (13) 

For any block A of W corresponding to cross terms 
between normal coordinates carrying the same rep- 
resentation, by developing the same expressions we 
have: 

A~ = A~(11) + A1(22) 

A22 -- AI(ll) q- A1(22) 
(14) 

A12 = -Al(21 ) d- A1(12 ) 

A21 : A1(21 ) - AI(IE). 

Here, Ato = Wrs and A~ is the block of W1 corre- 
sponding to A. 

Therefore, if A lies on the main diagonal of W, it 
is symmetric (as well as A1) and AI(12 ) :-A1(21 ). Con- 
sequently, (10) still holds. Then, we may conclude 
that (10) and (13) are of general use, and some 
important laws can be stated: 

(1) Any element of  W relative to normal coordinates 
with non-equivalent site-symmetry irreducible rep- 
resentation is zero. 

(2) Any off-diagonal element of  W involving cross 
terms between normal coordinates that are related to 
each other by symmetry degeneracy is zero. All the 
diagonal elements involving such coordinates are equal. 

Another important point concerns the cross terms 
between normal coordinates that belong to the same 

two- or three-dimensional (E or T) representations, 
without being related to each other by symmetry 
degeneracy. In other words, this is the problem of 
off-diagonal 2 x 2 or 3 x 3 blocks of W in connection 
with symmetry-degenerate normal coordinates: for 
the rigid body, this may concern the so-called S tensor 
for some sites of high symmetry. 

Here, a more subtle distinction must be made 
between the various possibilities. For instance, if the 
representations of the symmetry-degenerate sets of 
coordinates are the same, and are also irreducible, (8), 
(9) and (10) hold:* consequently, in each block of 
W that is relative to such degenerate coordinates all 
the diagonal elements are equal, and all off-diagonal 
elements will be zero. This is the reason why the S 
tensor for groups like 23 (T), or 432 (O) is diagonal 
with all equal non-zero elements, as shown by ST. 

For groups where the real E representations are 
reducible, (14) can be applied when such representa- 
tions are the same; however, since we are not on the 
main diagonal of W, for such blocks A1(12)# A1(2~), 
and (10) does not hold for this reason. Anyway, by 
applying (14), we have A12 =-A2~ and A~1 = A22. 

A particular problem occurs when the normal coor- 
dinates carry different, though equivalent, representa- 
tions. Here (9) cannot be applied, and the value of 
the sums ~j Mt,(jp)Mow(j~) depends on each particular 
case. For this reason, simple laws such as (1) and (2) 
cannot be stated. Therefore, for symmetry-degenerate 
coordinates, it is necessary not only to find the symmetry 
label (or the character) of  a particular set of  equivalent 
representations, but we should know also the representa- 
tion itself. This is different from most spectroscopic 
applications of group theory. 

Relationships to T, L and S 

As we have already mentioned, the use of W in lieu 
of T, L and S is essential for non-rigid motion. 
However, the relationships of W to T, L and S can 
be interesting to examine: such relationships are also 
a good check for our generalized treatment, which 
should be identical with ST for a rigid molecule. 

According to GF (see their equations 6 and 9), W 
is connected with T, L and S by the following transfor- 
mation: 

\ S  + ', L / =  D-l/2WextD-1/2' (15) 

where D is a diagonal matrix that is formed by repeat- 
ing the molecular mass three times and from the 
principal moments of inertia, and Wext is the transla- 
tional-rotational part of W, corresponding to the first 
6 x6 (or 5 ×5) block along the main diagonal. Since, 

* Equation (10) holds with respect to row and column indices 
(r, s) referred to the block. 
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for any j th  symmetry transformation, 

/ T '  ' , ~ ' \  ! __ l ~ - -  1 / 2 |  _ _ _ _ ~ _ _ ~ - _ |  ! '~-- 1 /2  QjWextQf = Wj(ext) \S , L ] 
(16) 

this necessarily implies that 

'__~_S'_~ / 'T ' , S \  r 
S'* [ L ' ]  : Q~S¥-F-L~Q " (17) 

Since S is real, S*= S T also. 
Let us consider now the symmetry labelling of the 

translational and rotational normal modes, Le. the 
ones corresponding to Wext. In our procedure, the 
first three eigenvectors relative to the translational 
motion of the isolated molecule are: 

q l  = q 2  = q 3  = • 

Here, ai = (m~/m) ~/2, where m~ is the mass of the ith 
atom in the molecule, and m is the mass of the 
molecule; the sequence of three numbers is repeated 

f o r  each atom. In this way, the first three modes and 
normal coordinates ql, q2 and q3 are defined: these 
coordinates correspond to motion along the three 
principal axes of inertia x, y and z, respectively. 

For the rotational normal coordinates, we have 

[_ Zl~. 11 = / Z~21 / [--Y,~3) 
Here, f l l , --(mdI,) l /2; ~2i=(mi/h)l/2; and f13,= 
(m# I3) ~/2, where x~, y~, z~ are the atomic coordinates 
referred to the principal axes of inertia, and/1,  h ,  I3 
are the principal moments of inertia corresponding 
to the x, y and z axes. As for translational coordinates, 
the sequence is repeated for each atom. 

If such eigenvectors (q~ to q6) do not result directly 
from diagonalization of the dynamical matrix of the 
isolated molecule, following Wilson et al. (1955) or 
Gwinn (1971), they are replaced by the eigenvectors 
shown above. This is equivalent to choosing purely 
translational or rotational motion along (or around) 
the principal axes in lieu of their combinations in the 
space of the six- (or five-) fold degeneracy occurring 
for zero frequency. If the molecule is linear, and z is 
chosen as the axis corresponding to the least moment 
of inertia (here zero), q6 is omitted, and the calcula- 
tion is carried on as for the general case. 

Since the first three normal coordinates are transla- 
tional, the first 3 x 3 diagonal block in Qj corresponds 
to M i, the point-group symmetry operation: if the 

coordinates are referred to the principal axes of iner- 
tia, the representation of the group corresponding to 
the Mj's is irreducible, provided no transformations 
involving complex bases are considered. 

The components of the vectors q4 to q6, which define 
the rotational n o r m ~  coordinates, are for each atom 
equal to Xxri, where X is a unit rotation vector around 
the x, y or z axis, and ri is the distance of the atom 
from the origin. According to the transformation rules 
for a vector product, the corresponding diagonal 
block of Qj is MjlMjl. If  (15) to (17) are considered, 
this necessarily implies that (2) must follow, in com- 
plete agreement with ST. 

On these grounds, a general review concerning T, 
L and S for all the possible sites in crystals can be 
obtained quite easily. For monodimensional rep- 
resentations, the cases are trivial (see the examples 
given below); for higher-dimensional representa- 
tions, a distinction should be made between the 
groups with complex irreducible representations, and 
the others. For the holoaxial groups like 422 (D4), 
32 (D3), or 622 (D6), the irreducible E representations 
are real, and the representations of translations and 
rotations, when such ' E '  degeneracy occurs, are the 
same, since no improper rotations are there. There- 
fore, in S the 2 × 3 block involving x and y is diagonal, 
with Sa~ = S:z, as from law 2. The third line and 
column of S will have all off-diagonal elements equal 
to zero, according to law 1. These results are the same 
as in ST. A rather similar result with respect to 
the 3 x3 ' T '  degenerate representations can be ob- 
tained for the cubic holoaxial groups 23 and 432 (see 
above). 

For cubic groups, such as Th, Ta or Oh (i.e. m3, 
43m and m3m) the representations of the transla- 
tional normal coordinates are not equivalent to the 
representations of the rotational coordinates, and 
therefore S is zero. For T and L, owing to the three- 
dimensional 'T '  degeneracy, law 2 holds, and the 
results are as in ST. 

For holoaxial groups with real reducible rep- 
resentations, such as 4 (C3), 3 (Ca), or 6 (C6), (14) 
can be applied, and $12 =-$21.  

The last point to be dealt with is the case of real 
irreducible representations for non-holoaxial groups, 
such as C4v(4mm), C3v(3m), C6v(6mm), D2a(7~2m), 
Dah(4/mmm), etc. Here, the representation of the 
'E'- labelled rotational and translational normal coor- 
dinates are sometimes different (Cah, Dab, etc.), and 
in other instances they are equivalent, but not equal. 
For the former cases, according to law 1, S is zero; 
for the latter, laws 1 and 2 can be applied to T and 
L, but not to S. 

A detailed analysis must be therefore carried on, 
for each site symmetry. For such considerations, 
which involve only a very limited number of 
cases, all the results that are shown in ST can be 
obtained. 
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Table 1. The tensor W for or-sulfur (atomic mass units x A 2 ;  referred to the principal axes of inertia) 

For q7, q8 and q9, ql0, which are the internal mode frequencies considered here, the calculated frequency for the free molecule is 
reported in the first column. In the crystal, these frequencies become 82 to 99 cm -l for the first two, and 162 to 171 cm -~ for the other 
two (Gramaccioli & Filippini, 1984). 

ql(B) q2(A) qa(A) q4(n) qs(A) q6(A) q7(A) qs(B) q9(A) qlo(B) 
ql 6.420 0.000 0.000 -0.193 0.000 0.000 0.000 -0.119 0.000 0.035 
q2 8.637 -0.743 0.000 1.207 - 1.349 -0.445 0.000 0.079 0.000 
q3 5.486 0.000 -0.980 0.075 0.128 0.000 -0.044 0.000 
q4 3.447 0.000 0.000 0.000 0.045 0.000 -0.054 
q5 3.713 -1.026 -0.023 0.000 -0.016 0.000 
q6 6.662 0.457 0.000 0.018 0.000 

q~}(E2; 67 cm -1 ) 1.0840.9840"000 0.0000"011 -0.0170"000 

q9 ]. ( E 0.280 0.000 
qtoJ z;156cm-l) 0.285 

Applications and discussion 

( a ) Anthracene 

As an example, let us consider the tensor W for 
anthracene, which is reported in Table 5 of GF.* In 
this table, the rows and columns refer to the normal 
coordinates q~ to q14, in sequence, from the lowest 
to the highest frequencies. The elements of further 
rows and columns referring to q~5 onwards are close 
to zero (especially if non-diagonal),  because frequen- 
cies are high. The representations of the internal 
coordinates q7 to q14 are, in sequence: B3u, Au, B2~, 
BEg , B ig  , B3u , Ag, B3g , according to Mulliken's label- 
ling. However, such classification is referred to the 
DEh(mmm) symmetry of the free molecule, whereas 
for our purpose only the u, g labels referring to the 
Ci(1) site are effective. The representation of the 
translational normal coordinates ql to q3 is 'U' ,  
whereas that of the rotational normal coordinates q4 
to q6 is ' g ' .  As a first consequence, because of law 1, 
the S tensor will be zero, as in all cases of centrosym- 
metric molecular sites. 

Apart from the elements of W corresponding to S, 
we can extend our considerations to all the region 
concerning internal modes and their interaction with 
translational or rotational modes. We accordingly 
notice that all the elements that are relative to cross 
terms between the 'g '  rotational modes involving 
coordinates q4 to q6 and the 'u '  internal modes corre- 
sponding to q7, q8, q9 and q~2 are zero. For the same 
reason, all the cross terms between the 'u '  transla- 
tional modes ql-q3 and the 'g '  internal modes corre- 
sponding to q~o, q~, ql3 and q~a are zero, as well as 
any cross term between internal 'g '  and 'u '  modes. 

( b ) a-Sulfur 

Similar observations can be made with respect to 
the W tensor .or a-sulfur. This tensor has recently 
been calculated by us and is reported in Table 1: the 
temperature factors that are deduced from it are 

* The values of W reported in GF for anthracene and other 
hydrocarbons with site symmetry T should be doubled. 

reported elsewhere (Gramaccioli & Filippini, 1984), 
and are in excellent agreement with the experimental 
values (Pawley & Rinaldi, 1972). The elements corre- 
sponding to the high-frequency internal modes (ql~ 
onwards) are very small and are not reported here. 

The representation of the internal coordinates q7 
and q8 is E2; the same representation is carried by q9 
and q~o (Gramaccioli & Filippini, 1984). The site 
symmetry of the $8 molecule is (?2 (the free molecule 
has a non-crystallographic D4d symmetry). In our 
calculations, the twofold axis of the site symmetry 
has been chosen as x. 

With respect to the site symmetry, q~ and q4 carry 
the B representation, whereas q2, q3, qs and q6 carry 
the A representation. According to our first law, there- 
fore, the cross terms between A and B coordinates 
are zero: this leads to T, L and S tensors in agreement 
with ST. Of the internal modes, the E2 representation 
for the isolated molecule splits into an A and a B 
representation in the crystal. This effect can be seen 
quite easily in a character table for the group D4d: 
since the crystallographic twofold axis of the (?2 site 
symmetry for a-sulfur is normal to the 8 axis of the 
free molecule, the characters corresponding to the C~ 
operations are important for our purposes. These are 
zero, thereby implying the presence of opposite ele- 
ments in the diagonal, i.e. in the corresponding 1 x 1 
representations. In our particular case, q7 and q9 carry 
the A representation, whereas q8 and qlo the B rep- 
resentation: the results in Table 1 are in agreement 
with our first law. 

( c) Adamantane 

Let us consider now the crystals of the 42m form 
of adamantane:  here the molecule lies in a site of 
4($4) symmetry. The translational coordinates ql and 
q2 along x and y carry an E representation, as well 
as the rotational coordinates q4 and qs. Instead, the 
translation along z(q3) carries an A representation, 
and the rotation involving z(q6) a B representation. 

Because of our first law, the off-diagonal elements 
of W corresponding to L13 , L23 , T13 and T23 are zero. 
For the same reason, all the components of W corre- 
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sponding to the third row and column of S are zero. 
According to our second law, it will be: T12 = L12 = 0, 
and T11 = T22; Lll = L22. From (9), since g = 2  and 
h = 4, we also have: Tll = 2(T1(11) ± T1(22)) = T22, and 
similarly for L~ = L22. This is in agreement with our 
results (Filippini, Gramaccioli,  Simonetta & Suffritti, 
1976a) and with S T .  
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Abstract 

A 'non-rigid' harmonic lattice-dynamical model has 
been used for calculating thermal motion in crystals 
of o-terphenyl. For this purpose, empirical internal 
and external force fields, derived from a series of 
other aromatic hydrocarbons have been employed. 
The agreement between calculated anisotropic tem- 
perature factors and corresponding neutron-diffrac- 
tion data is excellent (10%); it becomes decidedly 
worse if intramolecular van der Waals interactions 
are neglected in our model. Bond-length corrections 
for the general case of non-rigid thermal motion are 
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made: the differences with respect to the 'ordinary '  
rigid-body model are particularly evident for the C - H  
bonds. 

Introduction 

The need to know thermal motion in crystals on a 
rational basis is rapidly developing nowadays. This 
may be essential for improving the empirical force 
fields, which too often do not distinguish between 
the free and the packed molecules. Other important 
applications are in electron density measurements, 
and even for establishing the mechanism of movement 
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